
Calculating the minimum planar graph and generating Voronoi

tessellations

Sam Doctolero and Alex M Chubaty

2023-04-18

Contents

Overview . 2
Technical reference to the MPG engine written in C++ 2

Terminology . 4
Data Structures . 4
Type Definitions . 5
The Engine Class . 5
How to Use the Engine . 10

1

Overview

The Minimum Planar Graph (MPG) is a spatial representation of a mathematical graph or network
that is useful for modelling dense two-dimensional landscape networks. It can efficiently approximate
pairwise connections between graph nodes, and this can assist in the visualization and analysis
of how a set of patches is connected. The MPG also has the useful property that the proximity,
size and shape of patches in the network combined with the pattern of resistance presented by the
landscape collectively influence the paths among patches and the end-points of those links. In this
sense the MPG can be said to be spatially-explicit, and therefore to be a property of the entire
landscape under analysis (or alternatively a property of the digital resistance map used to represent
the landscape).

The Minimum Planar Graph (MPG) achieves this spatially-explicit property by finding Voronoi
polygons that describe regions of proximity in resistance units around focal patches. The algorithm
that is used to find the Voronoi boundaries and approximate the least cost-paths between patches
and their end-points is described below.

In grainscape, the boundaries of Voronoi polygons are found by using a spreading or marching
algorithm. This is done beginning in each perimeter cell of a patch and spreading out to adjacent
cells that are not part of any patch and have not been visited yet by the algorithm. These cells are
then given a patch ID to mark the Voronoi territory. A Voronoi boundary is found when a cell is
visited twice by two different Voronoi territories or IDs originating from different patches.

Using a marching algorithm to find the Voronoi boundaries makes it possible to implement a linking
algorithm that can run in parallel with the marching algorithm. As a cell is spread into (let’s call it
a child cell) it then creates a link or connection between the child cell and the cell that it spread
from, which we call a parent cell.

Finding the least-cost path in this way is only possible because the algorithm stores the child cells
(which will eventually become parent cells) in a queuing table that sorts the cells in a certain order.
The child cells are sorted by increasing Euclidean distance between the child cell and their origin
cell, the perimeter cell that the connection originally spawned from. A link or path between patches
is then created at the first Voronoi boundary between two patches.

The MPG algorithm has the following general steps. These are represented in more detail in a flow
chart in Figure 1.

1. Create Active Cells.
2. Check if the Active Cells are ready to spread.
3. Spread to all 4 adjacent cells for all the Active Cells that ready to spread.
4. The cells that have been recently spread in to become new Active Cells.
5. Repeat.

The linking algorithm is embedded within the spreading functions of the MPG algorithm. When
an Active Cell spreads a link map creates a connection between the parent Active Cell to the new
(child) Active Cell. Linking is assisted by the queue when finding the least-cost paths.

Technical reference to the MPG engine written in C++

The following is intended to provide an overview of the C++ engine provided by the package that
implements the MPG algorithm. It may be useful for those who wish to implement MPG extraction
in other programming languages. Reading and interpretation of this section is not required for the

2

Figure 1: Overview of the MPG algorithm.

3

use of grainscape in R. An interface to this code has been abstracted to R functions using the
Rcpp package.

Terminology

• Cell: A box or element in a map.
• Active Cell: A type of cell that is currently being evaluated. It refers to the child cell mentioned

above.
• Time: An index of the iteration.
• Object: An instance of a certain data type, class, or data structure (i.e., Cell c, c then is an

object of type Cell).

Data Structures

• Cell: stores its own position (row and column) and an ID.
• ActiveCell: inherits the properties of a Cell and has its own properties such as distance,

originCell, parentCell, resistance, and time (or iterations). This type of cell is used to
keep track of which cells are currently being evaluated.

• LinkCell: inherits the properties of a Cell and has its own properties such as cost, distance,
fromCell, and originCell. This type of cell is used to create LinkMap.

Figure 2: Schematic representation of Cell type data structures.

• ActiveCellHolder: a type of container that stores a vector of ActiveCells in an order.
• ActiveCellQueue: contains an ActiveCellHolder. Its main purpose is to properly store the

ActiveCellHolder in a vector in an order, increasing Euclidean distance.

4

• InputData: contains all the data that is needed for the engine to operate. The user of the
engine has to create an instance of it and initialize all the properties before giving the address
of the object to the engine’s constructor.

• Link: stores all the links (directly and indirectly) between the patches. Links are given a
negative ID to distinguish them from patch IDs.

• OutputData: similar to InputData but it acts as a container for all the data that are calculated
by the engine and gives that data to the user.

• Patch: a patch or a cluster are the habitats that are found in the resistance map, given a
value for habitat.

Figure 3: Schematic representation of additional data structures.

Type Definitions

• lcCol: a vector of LinkCells.
• LinkMap: a vector of lcCols, which in turn creates a Map. This type stores the connections

between cells.
• flCol: a vector of floating point values.
• flMap: a vector of flCol, which in turn creates a Map that contains floating point values in

each element or cell.

The Engine Class

The main calculator of the program. It creates the minimum planar graph (MPG) using the MPG
algorithm, finds least cost links or paths, and finds patches or clusters.

Fields/Properties

5

Figure 4: Schematic representation of type definitions.

Property Data Type Description

in_data InputData Pointer Points to an InputData object.
This is where the engine gets all
the initialization values from.

out_data OutputData Pointer Points to an OutputData object.
The engine stores all the
calculated values in this variable.

maxCost float The maximum resistance or cost
in the resistance map.

costRes float The minimum resistance or cost
in the resistance map.

active_cell_holder ActiveCellQueue Holds or stores all the
ActiveCells.

temporary_active_cell_holder ActiveCellQueue Similar to active_cell_holder,
except it acts as an intermediate
or temporary holder of
ActiveCells. Required for
vector resizing and comparing.

spread_list vector of ActiveCells Stores all the ActiveCells that
are ready to spread to all 4
adjacent cells, if possible.

iLinkMap LinkMap A map that keeps track of all the
connections between cells due to
the spreading and queuing
functions.

voronoi_map flMap A map that contains floating
point values, it stores the Voronoi
boundaries/polygons.

cost_map flMap A map that contains the
resistance or cost in each
cell/element.

error_message Char Pointer Stores the error messages that
occur in the engine. It acts as a
way to diagnose problems in the
engine.

Methods/Functions

Public Functions These are the functions that are visible to the user.

Function Return Type Input Arguments Description

6

Function Return Type Input Arguments Description

initialize Boolean Nothing Prepares the engine
for calculation.

start Void Nothing It runs the MPG
algorithm.

Linking Functions These functions create the links between cells and finds the least cost (direct
or indirect) paths between patches.

Function Return Type Input Arguments Description

findPath Void LinkCell Pointer, LinkCell
Pointer, Vector of Links

Finds the least cost
path between two
patches.

connectCell Void ActiveCell Pointer, Integer,
Integer, Float

Connects the child cell
to the parent cell.

parseMap Cell LinkCell, Link Given a starting Cell it
follows the connections
until it reaches a patch.
The last cell in the
connection is returned.

lookForIndirectPathVoid Vector of Links, Link Tries to find an indirect
link and updates the
second argument.

Patch Finding Functions The functions are responsible for finding the patches or clusters in a
resistance map, given a value for a habitat.

Function Return Type Input Arguments Description

findPatches Void Nothing Finds all the patches in
the patch vector and
assign patch IDs.

getIndexFromList Int Float, Vector of Patches Finds the index in the
vector of patches that the
given ID correspond to.

combinePatches Int Int, Int, Vector of Patches Given two indices and
the list of patches.
Extract the two patches
from the list and combine
those two into one patch.
Insert the new patch into
the list and return the
index value of the new
patch.

7

Figure 5: Schematic representation of the Engine Class

8

Common Functions Common functions are used in almost all of the functions in the engine.

Function Return Type Input Arguments Description

outOfBounds Bool Int, Int, Int, Int Checks to see if the given
row and column is still
within the resistance
map’s dimensions.

cellIsEqual Bool Cell, Cell Compares the two cells’
row and column if they
match.

Static Functions Static functions are functions that can be used without declaring an object of
the class.

Function Return Type Input Arguments Description

emax Float Vector of Floats Finds the maximum
value from the vector
of floating point
values

emin Float Vector of Floats Finds the minimum
value from the vector
of floating point
values

calcDistance Float Cell, Cell Finds the Euclidean
distance between two
Cells

9

How to Use the Engine

1. Create InputData and OutputData objects.
2. Initialize the InputData object’s fields. Keep in mind that the vectors in the InputData and

Output data structures are all of type float.
3. Create an array of Char with the length of MAX_CHAR_SIZE or a larger value.
4. Create an Engine object and give the address of the InputData and OutputData objects, the

Char array and the size of the array as arguments.
5. Call the initialization function from the Engine object.
6. If the initialization is successful, call the start function from the Engine object. If the

initialization is not successful, the array of char will contain the reason for the initialization
failure.

7. Once the engine is done calculating, extract all the fields needed in the OutputData object.

A snippet C++ code is shown on the next page as an example.

Note that the current Engine has two lines of code that are meant for interfacing with R. In order
to make the Engine run with any programming or scripting language, remove those two lines. One
of them is an include statement for Rcpp, at the very top of source code, and the other is inside
the start function, the first line inside the while loop. Those two lines are convenient for R users
when they want to interrupt or stop the MPG algorithm safely, without crashing their console and
possibly losing their data.

10

vector<float> EngineInterface(vector<float> resistance, vector<float> patches,

int nrow, int ncol)

{

//InputData and OutputData objects

InputData inObj;

OutputData outObj;

//Initialize InputData object

inObj.cost_vec = resistance;

inObj.nrow = nrow;

inObj.ncol = ncol;

inObj.patch_vec = patches;

//Array of chars with a size of MAX_CHAR_SIZE

char error[MAX_CHAR_SIZE];

//Engine object while passing in the InputData and OutputData objects'

// address and the array of chars

Engine engineObj(&inObj, &outObj, error, MAX_CHAR_SIZE);

//Initialize the engineObj;

//If it fails output the reason why and exit the function

if (engineObj.initialize() == false)

{

cout << error << endl;

return outObj.voronoi_map;

}

//start the calculation

engineObj.start();

//extract the data needed, in this case the voronoi_map

return outObj.voronoi_map;

}

11

	Overview
	Technical reference to the MPG engine written in C++
	Terminology
	Data Structures
	Type Definitions
	The Engine Class
	How to Use the Engine

